Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.231
Filtrar
1.
Proc Biol Sci ; 291(2020): 20232775, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593848

RESUMO

Transposable elements (TEs) are selfish genetic elements whose antagonistic interactions with hosts represent a common genetic conflict in eukaryotes. To resolve this conflict, hosts have widely adopted epigenetic silencing that deposits repressive marks at TEs. However, this mechanism is imperfect and fails to fully halt TE replication. Furthermore, TE epigenetic silencing can inadvertently spread repressive marks to adjacent functional sequences, a phenomenon considered a 'curse' of this conflict resolution. Here, we used forward simulations to explore how TE epigenetic silencing and its harmful side effects shape the evolutionary dynamics of TEs and their hosts. Our findings reveal that epigenetic silencing allows TEs and their hosts to stably coexist under a wide range of conditions, because the underlying molecular mechanisms give rise to copy-number dependency of the strength of TE silencing. Interestingly, contrary to intuitive expectations that TE epigenetic silencing should evolve to be as strong as possible, we found a selective benefit for modifier alleles that weaken TE silencing under biologically feasible conditions. These results reveal that the dual nature of TE epigenetic silencing, with both positive and negative effects, complicates its evolutionary trajectory and makes it challenging to determine whether TE epigenetic silencing is a 'blessing' or a 'curse'.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Epigênese Genética , Evolução Biológica , Eucariotos/genética
2.
PLoS Biol ; 22(4): e3002577, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626194

RESUMO

The move from a free-living environment to a long-term residence inside a host eukaryotic cell has profound effects on bacterial function. While endosymbioses are found in many eukaryotes, from protists to plants to animals, the bacteria that form these host-beneficial relationships are even more diverse. Endosymbiont genomes can become radically smaller than their free-living relatives, and their few remaining genes show extreme compositional biases. The details of how these reduced and divergent gene sets work, and how they interact with their host cell, remain mysterious. This Unsolved Mystery reviews how genome reduction alters endosymbiont biology and highlights a "tipping point" where the loss of the ability to build a cell envelope coincides with a marked erosion of translation-related genes.


Assuntos
Bactérias , Eucariotos , Animais , Bactérias/genética , Eucariotos/genética , Genoma Bacteriano/genética , Simbiose/genética , Fenômenos Fisiológicos Bacterianos , Filogenia
3.
Yi Chuan ; 46(4): 266-278, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38632090

RESUMO

RNA silencing (or RNA interference, RNAi) is a conserved mechanism for regulating gene expression in eukaryotes, which plays vital roles in plant development and response to biotic and abiotic stresses. The discovery of trans-kingdom RNAi and interspecies RNAi provides a theoretical basis for exploiting RNAi-based crop protection strategies. Here, we summarize the canonical RNAi mechanisms in plants and review representative studies associated with plant-pathogen interactions. Meanwhile, we also elaborate upon the principles of host-induced gene silencing, spray-induced gene silencing and microbe-induced gene silencing, and discuss their applications in crop protection, thereby providing help to establish novel RNAi-based crop protection strategies.


Assuntos
Proteção de Cultivos , Plantas , Interferência de RNA , Plantas/genética , Eucariotos/genética , RNA Interferente Pequeno/genética
4.
Curr Biol ; 34(5): R211-R213, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471453

RESUMO

In most eukaryotes, balanced chromosome segregation at meiosis requires crossovers, but female Bombyx mori lack these structures. Instead, the synaptonemal complex is repurposed to compensate for this absence of crossovers, a remarkable example of exaptation.


Assuntos
Bombyx , Elefantes , Animais , Feminino , Elefantes/genética , Bombyx/genética , Meiose , Complexo Sinaptonêmico , Eucariotos/genética , Segregação de Cromossomos
5.
Environ Microbiol ; 26(3): e16606, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509748

RESUMO

Metabarcoding approaches targeting microeukaryotes have deeply changed our vision of protist environmental diversity. The public repository EukBank consists of 18S v4 metabarcodes from 12,672 samples worldwide. To estimate how far this database provides a reasonable overview of all eukaryotic diversity, we used Arcellinida (lobose testate amoebae) as a case study. We hypothesised that (1) this approach would allow the discovery of unexpected diversity, but also that (2) some groups would be underrepresented because of primer/sequencing biases. Most of the Arcellinida sequences appeared in freshwater and soil, but their abundance and diversity appeared underrepresented. Moreover, 84% of ASVs belonged to the suborder Phryganellina, a supposedly species-poor clade, whereas the best-documented suborder (Glutinoconcha, 600 described species) was only marginally represented. We explored some possible causes of these biases. Mismatches in the primer-binding site seem to play a minor role. Excessive length of the target region could explain some of these biases, but not all. There must be some other unknown factors involved. Altogether, while metabarcoding based on ribosomal genes remains a good first approach to document microbial eukaryotic clades, alternative approaches based on other genes or sequencing techniques must be considered for an unbiased picture of the diversity of some groups.


Assuntos
Amoeba , Eucariotos , Filogenia , Eucariotos/genética , DNA , Solo
6.
Bioinformatics ; 40(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38441320

RESUMO

MOTIVATION: The ribosomal DNA (rDNA) arrays are highly repetitive and homogenous regions which exist in all life. Due to their repetitiveness, current assembly methods do not fully assemble the rDNA arrays in humans and many other eukaryotes, and so variation within the rDNA arrays cannot be effectively studied. RESULTS: Here, we present the tool ribotin to assemble full length rDNA copies, or morphs. Ribotin uses a combination of highly accurate long reads and extremely long nanopore reads to resolve the variation between rDNA morphs. We show that ribotin successfully recovers the most abundant morphs in human and nonhuman genomes. We also find that genome wide consensus sequences of the rDNA arrays frequently produce a mosaic sequence that does not exist in the genome. AVAILABILITY AND IMPLEMENTATION: Ribotin is available on https://github.com/maickrau/ribotin and as a package on bioconda.


Assuntos
Genoma , Software , Humanos , DNA Ribossômico/genética , Análise de Sequência de DNA/métodos , Eucariotos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
7.
Genome Res ; 34(2): 256-271, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38471739

RESUMO

The formation of resting cysts commonly found in unicellular eukaryotes is a complex and highly regulated survival strategy against environmental stress that involves drastic physiological and biochemical changes. Although most studies have focused on the morphology and structure of cysts, little is known about the molecular mechanisms that control this process. Recent studies indicate that DNA N 6-adenine methylation (6mA) could be dynamically changing in response to external stimuli; however, its potential role in the regulation of cyst formation remains unknown. We used the ciliate Pseudocohnilembus persalinus, which can be easily induced to form cysts to investigate the dynamic pattern of 6mA in trophonts and cysts. Single-molecule real-time (SMRT) sequencing reveals high levels of 6mA in trophonts that decrease in cysts, along with a conversion of symmetric 6mA to asymmetric 6mA. Further analysis shows that 6mA, a mark of active transcription, is involved in altering the expression of encystment-related genes through changes in 6mA levels and 6mA symmetric-to-asymmetric conversion. Most importantly, we show that reducing 6mA levels by knocking down the DNA 6mA methyltransferase PpAMT1 accelerates cyst formation. Taken together, we characterize the genome-wide 6mA landscape in P. persalinus and provide insights into the role of 6mA in gene regulation under environmental stress in eukaryotes. We propose that 6mA acts as a mark of active transcription to regulate the encystment process along with symmetric-to-asymmetric conversion, providing important information for understanding the molecular response to environmental cues from the perspective of 6mA modification.


Assuntos
Metilação de DNA , Eucariotos , Eucariotos/genética , DNA/química , Regulação da Expressão Gênica , Adenina/química , Adenina/metabolismo
8.
Genome Res ; 34(2): 272-285, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479836

RESUMO

mRNA translation relies on identifying translation initiation sites (TISs) in mRNAs. Alternative TISs are prevalent across plant transcriptomes, but the mechanisms for their recognition are unclear. Using ribosome profiling and machine learning, we developed models for predicting alternative TISs in the tomato (Solanum lycopersicum). Distinct feature sets were predictive of AUG and nonAUG TISs in 5' untranslated regions and coding sequences, including a novel CU-rich sequence that promoted plant TIS activity, a translational enhancer found across dicots and monocots, and humans and viruses. Our results elucidate the mechanistic and evolutionary basis of TIS recognition, whereby cis-regulatory RNA signatures affect start site selection. The TIS prediction model provides global estimates of TISs to discover neglected protein-coding genes across plant genomes. The prevalence of cis-regulatory signatures across plant species, humans, and viruses suggests their broad and critical roles in reprogramming the translational landscape.


Assuntos
Eucariotos , Iniciação Traducional da Cadeia Peptídica , Humanos , Iniciação Traducional da Cadeia Peptídica/genética , Eucariotos/genética , Plantas/genética , Regiões 5' não Traduzidas , RNA Mensageiro/genética , Códon de Iniciação
9.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457644

RESUMO

Eupelagonemids, formerly known as Deep Sea Pelagic Diplonemids I (DSPD I), are among the most abundant and diverse heterotrophic protists in the deep ocean, but little else is known about their ecology, evolution, or biology in general. Originally recognized solely as a large clade of environmental ribosomal subunit RNA gene sequences (SSU rRNA), branching with a smaller sister group DSPD II, they were postulated to be diplonemids, a poorly studied branch of Euglenozoa. Although new diplonemids have been cultivated and studied in depth in recent years, the lack of cultured eupelagonemids has limited data to a handful of light micrographs, partial SSU rRNA gene sequences, a small number of genes from single amplified genomes, and only a single formal described species, Eupelagonema oceanica. To determine exactly where this clade goes in the tree of eukaryotes and begin to address the overall absence of biological information about this apparently ecologically important group, we conducted single-cell transcriptomics from two eupelagonemid cells. A SSU rRNA gene phylogeny shows that these two cells represent distinct subclades within eupelagonemids, each different from E. oceanica. Phylogenomic analysis based on a 125-gene matrix contrasts with the findings based on ecological survey data and shows eupelagonemids branch sister to the diplonemid subgroup Hemistasiidae.


Assuntos
Euglenozoários , Eucariotos , Filogenia , Eucariotos/genética , Euglenozoários/genética , RNA Ribossômico , Oceanos e Mares
10.
Wiley Interdiscip Rev RNA ; 15(2): e1837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38485452

RESUMO

Most eukaryotic mRNAs and different non-coding RNAs undergo a form of 3' end processing known as polyadenylation. Polyadenylation machinery is present in almost all organisms except few species. In bacteria, the machinery has evolved from PNPase, which adds heteropolymeric tails, to a poly(A)-specific polymerase. Differently, a complex machinery for accurate polyadenylation and several non-canonical poly(A) polymerases are developed in eukaryotes. The role of poly(A) tail has also evolved from serving as a degradative signal to a stabilizing modification that also regulates translation. In this review, we discuss poly(A) tail emergence in prokaryotes and its development into a stable, yet dynamic feature at the 3' end of mRNAs in eukaryotes. We also describe how appearance of novel poly(A) polymerases gives cells flexibility to shape poly(A) tail. We explain how poly(A) tail dynamics help regulate cognate RNA metabolism in a context-dependent manner, such as during oocyte maturation. Finally, we describe specific mRNAs in metazoans that bear stem-loops instead of poly(A) tails. We conclude with how recent discoveries about poly(A) tail can be applied to mRNA technology. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.


Assuntos
Poli A , Poliadenilação , Poli A/genética , Poli A/metabolismo , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Eucariotos/genética , Eucariotos/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(13): e2315531121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498704

RESUMO

Mating type (sex) plays a crucial role in regulating sexual reproduction in most extant eukaryotes. One of the functions of mating types is ensuring self-incompatibility to some extent, thereby promoting genetic diversity. However, heterothallic mating is not always the best mating strategy. For example, in low-density populations or specific environments, such as parasitic ones, species may need to increase the ratio of potential mating partners. Consequently, many species allow homothallic selfing (i.e., self-fertility or intraclonal mating). Throughout the extensive evolutionary history of species, changes in environmental conditions have influenced mating strategies back and forth. However, the mechanisms through which mating-type recognition regulates sexual reproduction and the dynamics of mating strategy throughout evolution remain poorly understood. In this study, we show that the Cip1 protein is responsible for coupling sexual reproduction initiation to mating-type recognition in the protozoal eukaryote Tetrahymena thermophila. Deletion of the Cip1 protein leads to the loss of the selfing-avoidance function of mating-type recognition, resulting in selfing without mating-type recognition. Further experiments revealed that Cip1 is a regulatory subunit of the Cdk19-Cyc9 complex, which controls the initiation of sexual reproduction. These results reveal a mechanism that regulates the choice between mating and selfing. This mechanism also contributes to the debate about the ancestral state of sexual reproduction.


Assuntos
Fertilidade , Reprodução , Reprodução/genética , Eucariotos/genética , Genes Fúngicos Tipo Acasalamento
12.
Nucleic Acids Res ; 52(5): 2130-2141, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38407292

RESUMO

Outliers in scientific observations are often ignored and mostly remain unreported. However, presenting them is always beneficial since they could reflect the actual anomalies that might open new avenues. Here, we describe two examples of the above that came out of the laboratories of two of the pioneers of nucleic acid research in the area of protein biosynthesis, Paul Berg and Donald Crothers. Their work on the identification of D-aminoacyl-tRNA deacylase (DTD) and 'Discriminator hypothesis', respectively, were hugely ahead of their time and were partly against the general paradigm at that time. In both of the above works, the smallest and the only achiral amino acid turned out to be an outlier as DTD can act weakly on glycine charged tRNAs with a unique discriminator base of 'Uracil'. This peculiar nature of glycine remained an enigma for nearly half a century. With a load of available information on the subject by the turn of the century, our work on 'chiral proofreading' mechanisms during protein biosynthesis serendipitously led us to revisit these findings. Here, we describe how we uncovered an unexpected connection between them that has implications for evolution of different eukaryotic life forms.


Assuntos
Aminoaciltransferases , Eucariotos , Glicina , Biossíntese de Proteínas , Aminoácidos/genética , Aminoaciltransferases/genética , Glicina/genética , Aminoacil-RNA de Transferência/metabolismo , Pesquisa , Bioquímica , Eucariotos/química , Eucariotos/genética
13.
BMC Genomics ; 25(1): 184, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365628

RESUMO

BACKGROUND: Almost all extant organisms use the same, so-called canonical, genetic code with departures from it being very rare. Even more exceptional are the instances when a eukaryote with non-canonical code can be easily cultivated and has its whole genome and transcriptome sequenced. This is the case of Blastocrithidia nonstop, a trypanosomatid flagellate that reassigned all three stop codons to encode amino acids. RESULTS: We in silico predicted the metabolism of B. nonstop and compared it with that of the well-studied human parasites Trypanosoma brucei and Leishmania major. The mapped mitochondrial, glycosomal and cytosolic metabolism contains all typical features of these diverse and important parasites. We also provided experimental validation for some of the predicted observations, concerning, specifically presence of glycosomes, cellular respiration, and assembly of the respiratory complexes. CONCLUSIONS: In an unusual comparison of metabolism between a parasitic protist with a massively altered genetic code and its close relatives that rely on a canonical code we showed that the dramatic differences on the level of nucleic acids do not seem to be reflected in the metabolisms. Moreover, although the genome of B. nonstop is extremely AT-rich, we could not find any alterations of its pyrimidine synthesis pathway when compared to other trypanosomatids. Hence, we conclude that the dramatic alteration of the genetic code of B. nonstop has no significant repercussions on the metabolism of this flagellate.


Assuntos
Parasitos , Trypanosoma brucei brucei , Trypanosomatina , Animais , Códon de Terminação , Eucariotos/genética , Código Genético , Parasitos/genética , Trypanosoma brucei brucei/genética , Trypanosomatina/genética
14.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38366053

RESUMO

Genome regulation in eukaryotes revolves around the nucleosome, the fundamental building block of eukaryotic chromatin. Its constituent parts, the four core histones (H3, H4, H2A, H2B), are universal to eukaryotes. Yet despite its exceptional conservation and central role in orchestrating transcription, repair, and other DNA-templated processes, the origins and early evolution of the nucleosome remain opaque. Histone-fold proteins are also found in archaea, but the nucleosome we know-a hetero-octameric complex composed of histones with long, disordered tails-is a hallmark of eukaryotes. What were the properties of the earliest nucleosomes? Did ancestral histones inevitably assemble into nucleosomes? When and why did the four core histones evolve? This review will look at the evolution of the eukaryotic nucleosome from the vantage point of archaea, focusing on the key evolutionary transitions required to build a modern nucleosome. We will highlight recent work on the closest archaeal relatives of eukaryotes, the Asgardarchaea, and discuss what their histones can and cannot tell us about the early evolution of eukaryotic chromatin. We will also discuss how viruses have become an unexpected source of information about the evolutionary path toward the nucleosome. Finally, we highlight the properties of early nucleosomes as an area where new tools and data promise tangible progress in the not-too-distant future.


Assuntos
Histonas , Nucleossomos , Nucleossomos/genética , Histonas/genética , Cromatina/genética , Archaea/genética , Archaea/metabolismo , Eucariotos/genética , Eucariotos/metabolismo
15.
Biosystems ; 237: 105133, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336225

RESUMO

Life codes increase in both number and variety with biological complexity. Although our knowledge of codes is constantly expanding, the evolutionary progression of organic, neural, and cultural codes in response to selection pressure remains poorly understood. Greater clarification of the selective mechanisms is achieved by investigating how major evolutionary transitions reduce spatiotemporal and energetic constraints on transmitting heritable code to offspring. Evolution toward less constrained flows is integral to enduring flow architecture everywhere, in both engineered and natural flow systems. Beginning approximately 4 billion years ago, the most basic level for transmitting genetic material to offspring was initiated by protocell division. Evidence from ribosomes suggests that protocells transmitted comma-free or circular codes, preceding the evolution of standard genetic code. This rudimentary information flow within protocells is likely to have first emerged within the geo-energetic and geospatial constraints of hydrothermal vents. A broad-gauged hypothesis is that major evolutionary transitions overcame such constraints with tri-flow adaptations. The interconnected triple flows incorporated energy-converting, spatiotemporal, and code-based informational dynamics. Such tri-flow adaptations stacked sequence splicing code on top of protein-DNA recognition code in eukaryotes, prefiguring the transition to sexual reproduction. Sex overcame the spatiotemporal-energetic constraints of binary fission with further code stacking. Examples are tubulin code and transcription initiation code in vertebrates. In a later evolutionary transition, language reduced metabolic-spatiotemporal constraints on inheritance by stacking phonetic, phonological, and orthographic codes. In organisms that reproduce sexually, each major evolutionary transition is shown to be a tri-flow adaptation that adds new levels of code-based informational exchange. Evolving biological complexity is also shown to increase the nongenetic transmissibility of code.


Assuntos
Eucariotos , Código Genético , Animais , Código Genético/genética , Eucariotos/genética , Vertebrados/genética , Reprodução , Ribossomos , Evolução Molecular
16.
Microbiol Spectr ; 12(3): e0301623, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38334383

RESUMO

Ocean microorganisms constitute ~70% of the marine biomass, contribute to ~50% of the Earth's primary production, and play a vital role in global biogeochemical cycles. The marine heterotrophic and mixotrophic protistan and fungal communities have often been overlooked mainly due to limitations in morphological species identification. Despite the accumulation of studies on biogeographic patterns observed in microbial communities, our understanding of the abundance and distribution patterns within the microbial community of the largest subtropical gyre, the South Pacific Gyre (SPG), remains incomplete. Here, we investigated the diversity and vertical composition of protistan and fungal communities in the water column of the ultra-oligotrophic SPG. Our results showed apparent differences in protistan community diversity in the photic and aphotic regions. The entire protistan community diversity was significantly affected by temperature, salinity, oxygen, and nutrient concentrations, while the parasitic community diversity was also affected by chlorophyll a concentration. The parasitic protists were assigned to the class Syndiniales accounting for over 98% of the total parasitic protists, exhibiting higher relative sequence abundance along the water depth and displaying consistent patterns among different sampling stations. In contrast to the protistan community, the fungal community along the SPG primarily clustered based on the sampling station and pelagic zones. In particular, our study reveals a significant presence of parasitic protists and functionally diverse fungi in SPG and their potential impact on carbon cycling in the gyre.IMPORTANCEOur findings carry important implications for understanding the distribution patterns of the previously unrecognized occurrence of parasitic protists and functionally diverse fungi in the nutrient-limited South Pacific Gyre. In particular, our study reveals a significant presence of parasitic Syndiniales, predominantly abundant in the upper 300 m of the aphotic zone in the gyre, and a distinct presence of fungal communities in the aphotic zone at the central part of the gyre. These findings strongly suggest that these communities play a substantial role in yet insufficiently described microbial food web. Moreover, our research enhances our understanding of their contribution to the dynamics of the food webs in oligotrophic gyres and is valuable for projecting the ecological consequences of future climate warming.


Assuntos
Micobioma , Água do Mar/microbiologia , Plâncton , Clorofila A , Eucariotos/genética , Água
17.
Proc Natl Acad Sci U S A ; 121(7): e2319840121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315855

RESUMO

"Complex multicellularity," conventionally defined as large organisms with many specialized cell types, has evolved five times independently in eukaryotes, but never within prokaryotes. A number of hypotheses have been proposed to explain this phenomenon, most of which posit that eukaryotes evolved key traits (e.g., dynamic cytoskeletons, alternative mechanisms of gene regulation, or subcellular compartments) which were a necessary prerequisite for the evolution of complex multicellularity. Here, we propose an alternative, nonadaptive hypothesis for this broad macroevolutionary pattern. By binning cells into groups with finite genetic bottlenecks between generations, the evolution of multicellularity greatly reduces the effective population size (Ne) of cellular populations, increasing the role of genetic drift in evolutionary change. While both prokaryotes and eukaryotes experience this phenomenon, they have opposite responses to drift: eukaryotes tend to undergo genomic expansion, providing additional raw genetic material for subsequent multicellular innovation, while prokaryotes generally face genomic erosion. Taken together, we hypothesize that these idiosyncratic lineage-specific evolutionary dynamics play a fundamental role in the long-term divergent evolution of complex multicellularity across the tree of life.


Assuntos
Evolução Biológica , Deriva Genética , Eucariotos/genética , Genoma , Regulação da Expressão Gênica
18.
Cell ; 187(4): 999-1010.e15, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325366

RESUMO

Protein structures are essential to understanding cellular processes in molecular detail. While advances in artificial intelligence revealed the tertiary structure of proteins at scale, their quaternary structure remains mostly unknown. We devise a scalable strategy based on AlphaFold2 to predict homo-oligomeric assemblies across four proteomes spanning the tree of life. Our results suggest that approximately 45% of an archaeal proteome and a bacterial proteome and 20% of two eukaryotic proteomes form homomers. Our predictions accurately capture protein homo-oligomerization, recapitulate megadalton complexes, and unveil hundreds of homo-oligomer types, including three confirmed experimentally by structure determination. Integrating these datasets with omics information suggests that a majority of known protein complexes are symmetric. Finally, these datasets provide a structural context for interpreting disease mutations and reveal coiled-coil regions as major enablers of quaternary structure evolution in human. Our strategy is applicable to any organism and provides a comprehensive view of homo-oligomerization in proteomes.


Assuntos
Inteligência Artificial , Proteínas , Proteoma , Humanos , Proteínas/química , Proteínas/genética , Archaea/química , Archaea/genética , Eucariotos/química , Eucariotos/genética , Bactérias/química , Bactérias/genética
19.
PLoS Comput Biol ; 20(2): e1011860, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335232

RESUMO

The complex eukaryotic cell resulted from a merger between simpler prokaryotic cells, yet the role of the mitochondrial endosymbiosis with respect to other eukaryotic innovations has remained under dispute. To investigate how the regulatory challenges associated with the endosymbiotic state impacted genome and network evolution during eukaryogenesis, we study a constructive computational model where two simple cells are forced into an obligate endosymbiosis. Across multiple in silico evolutionary replicates, we observe the emergence of different mechanisms for the coordination of host and symbiont cell cycles, stabilizing the endosymbiotic relationship. In most cases, coordination is implicit, without signaling between host and symbiont. Signaling only evolves when there is leakage of regulatory products between host and symbiont. In the fittest evolutionary replicate, the host has taken full control of the symbiont cell cycle through signaling, mimicking the regulatory dominance of the nucleus over the mitochondrion that evolved during eukaryogenesis.


Assuntos
Evolução Biológica , Simbiose , Simbiose/genética , Células Eucarióticas/metabolismo , Células Procarióticas/metabolismo , Eucariotos/genética , Filogenia
20.
Nucleic Acids Res ; 52(5): 2530-2545, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38197228

RESUMO

Argonaute (Ago) proteins are present in all three domains of life (bacteria, archaea and eukaryotes). They use small (15-30 nucleotides) oligonucleotide guides to bind complementary nucleic acid targets and are responsible for gene expression regulation, mobile genome element silencing, and defence against viruses or plasmids. According to their domain organization, Agos are divided into long and short Agos. Long Agos found in prokaryotes (long-A and long-B pAgos) and eukaryotes (eAgos) comprise four major functional domains (N, PAZ, MID and PIWI) and two structural linker domains L1 and L2. The majority (∼60%) of pAgos are short pAgos, containing only the MID and inactive PIWI domains. Here we focus on the prokaryotic Argonaute AfAgo from Archaeoglobus fulgidus DSM4304. Although phylogenetically classified as a long-B pAgo, AfAgo contains only MID and catalytically inactive PIWI domains, akin to short pAgos. We show that AfAgo forms a heterodimeric complex with a protein encoded upstream in the same operon, which is a structural equivalent of the N-L1-L2 domains of long pAgos. This complex, structurally equivalent to a long PAZ-less pAgo, outperforms standalone AfAgo in guide RNA-mediated target DNA binding. Our findings provide a missing piece to one of the first and the most studied pAgos.


Assuntos
Proteínas Arqueais , Archaeoglobus fulgidus , Proteínas Argonautas , Archaeoglobus fulgidus/metabolismo , Proteínas Argonautas/metabolismo , Bactérias/genética , Eucariotos/genética , Células Procarióticas/metabolismo , Domínios Proteicos , RNA Guia de Sistemas CRISPR-Cas , Proteínas Arqueais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...